Low Temperature Heat Capacity of Layered Superconductors SrNi₂Ge₂ and SrPd₂Ge₂

T. L. Hung, I. A. Chen, C. H. Huang, C. Y. Lin, C. W. Chen, Y. B. You, S. T. Jian, M. C. Yang, Y. Y. Hsu, J. C. Ho, Y. Y. Chen, et al.

Journal of Low Temperature Physics

ISSN 0022-2291 Volume 171 Combined 1-2

J Low Temp Phys (2013) 171:148-155 DOI 10.1007/s10909-012-0832-z Volume 171 • Numbers 1/2 • April 2013

Journal of Low Temperature Physics

10909 • ISSN 0022-2291 171(1/2) 1–156 (2013)

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

Low Temperature Heat Capacity of Layered Superconductors SrNi₂Ge₂ and SrPd₂Ge₂

T.L. Hung · I.A. Chen · C.H. Huang · C.Y. Lin · C.W. Chen · Y.B. You · S.T. Jian · M.C. Yang · Y.Y. Hsu · J.C. Ho · Y.Y. Chen · H.C. Ku

Received: 6 October 2012 / Accepted: 7 November 2012 / Published online: 16 November 2012 © Springer Science+Business Media New York 2012

Abstract Low-temperature heat capacity C(T) of the weakly electron-correlated SrNi₂Ge₂ 122-layer compound undergoes a superconducting transition with onset at 1.4 K and a bulk $T_c = 0.75$ K, where heat-capacity jump ratio $\Delta C(T_c)/\gamma T_c = 0.88$ –1.05. A small average superconducting energy gap $E_g(\text{ave}) = 2.21 \ kT_c = 0.14 \text{ meV}$ is derived for this multi-gap superconductor. Similar results for isostructural SrPd₂Ge₂ include $T_c(\text{onset}) = 3.5$ K, bulk T_c of 2.92 K, $\Delta C(T_c)/\gamma T_c = 0.70$ and $E_g(\text{ave}) = 2.54 \ kT_c = 0.64 \text{ meV}$. The higher T_c onset could be associated with stoichiometric 1:2:2 grains in the polycrystalline samples. In addition, deviations of E_g/kT_c from the BCS ratio of 3.5 suggest that, just like their iron-based counterpart, these 122-layer germanides may also exhibit an unconventional, fully-opened multi-gap *s*-wave superconductivity.

Keywords Superconducting materials · Heat capacity · 122-layer germanide

1 Introduction

The discovery of high temperature superconductivity with transition temperatures T_c up to 55 K in strongly electron-correlated LaFeAs($O_{1-x}F_x$) has generated a profound interest in iron-based layer systems [1].

S.T. Jian · M.C. Yang · Y.Y. Hsu Department of Physics, National Taiwan Normal University, Taipei 10677, Taiwan, ROC

J.C. Ho · Y.Y. Chen Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC

J.C. Ho is visiting from Wichita State University, USA.

T.L. Hung · I.A. Chen · C.H. Huang · C.Y. Lin · C.W. Chen · Y.B. You · H.C. Ku (\boxtimes) Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC e-mail: hcku@phys.nthu.edu.tw

For the Co-doped $A(\text{Fe}_{1-x}\text{Co}_x)_2\text{As}_2$ (A = Ca, Sr, Ba) 122-layer system with the ThCr₂Si₂-type body-centered-tetragonal (bct) structure (space group I4/mmm), T_c up to 22 K was observed near the antiferromagnetic spin density wave (SDW) transition of the undoped $A\text{Fe}_2\text{As}_2$ [2–10]. Local density approximation (LDA) band calculations indicate that the 3*d* electron density of states (DOS) has a downward shift on Co-3*d*⁷ bands with a stronger Co-3*d*⁷-As-4*p* hybridization. The LDA Fermi surface shows low dispersive 2D-like *d* bands and Co affects heavy hole-like bands at zone center, but not lighter electron-like bands around zone boundary [2–4].

For the Fe-deficient $K_{1-x}Fe_{2-y}Se_2$ 122-layer system, superconductivity up to 32 K occurs only in the vacancy-free stoichiometric KFe₂Se₂, and not in the vacancy-stabilized tetragonal superstructure $K_{0.8}Fe_{1.6}Se_2$ [11–13].

The disconnected 2D hole- and electron-pockets containing Fermi surface is believed to be the cause of an unconventional multi-gap *s*-wave superconductivity with possible sign-reversal between hole and electron pockets (s_{\pm} -wave) [14, 15].

Relevant to this study is the occurrence of superconductivity in the germanide system of SrT_2Ge_2 (T = 3d or 4d transition metals) with a similar bct structure where (TGe)⁻ layers are separated by Sr^{2+} layers [16–20]. T_c has been reported to be 3.04 K for $SrPd_2Ge_2$ [16], and 1.1 K for $SrNi_2Ge_2$ [18]. Considering the close resemblance in structural symmetry and mechanism of superconductivity between these iron-free compounds and the iron-based 122-layer systems, we have carried out a comprehensive calorimetric study on the superconducting- and normal-state thermal properties of $SrNi_2Ge_2$ and $SrPd_2Ge_2$ to supplement earlier preliminary heat capacity measurements.

2 Experiment

Ternary SrT_2Ge_2 samples (T = Ni or Pd) were prepared by two-step arc melting under argon atmosphere. High purity Ni or Pd (>99.9 %) was first arc melted with Ge (99.9999 %) to form an intermediate compound TGe, which was then melted together with Sr (99.5 %). Extra Sr was added to compensate for the evaporation loss due to high vapor pressure at melting, thus ensuring the stoichiometric ratio of Sr:T:Ge = 1:2:2 to within 1 %. X-ray powder-diffraction data were collected by a Rigaku Rotaflex 18-kW rotating anode diffractometer.

Low-temperature heat capacity measurements down to 0.3 K and in applied fields up to 1 T were made in a ³He cryostat using a thermal relaxation method with a RuO₂ thin-film thermometer. Additional characterizations include electrical resistance measurements down to 0.4 K by the standard four-probe method, and low-field magnetic susceptibility measurements down to 2 K by using a Quantum Design 1-T μ -metal shielded MPMS₂ Superconducting Quantum Interference Device (SQUID) magnetometer.

3 Results and Discussion

The as-melted polycrystalline samples show single-phase bct structure (space group I4/mmm) with tetragonal lattice parameters a = 0.4160(4) nm, c = 1.0187(10) nm

Fig. 2 Electrical resistance of SrNi₂Ge₂ indicates a T_c onset of 1.1 K. The molar magnetic susceptibility of SrPd2Ge2 indicates a T_c onset of 3.2 K at 10 G (Color figure online)

for $SrNi_2Ge_2$ and a = 0.4397(4) nm, c = 1.0065(10) nm for $SrPd_2Ge_2$. Their lowtemperature heat capacity C(T) data are shown in Fig. 1. A bulk-superconducting heat-capacity jump $\Delta C = 12.0$ mJ/mol K prevails in SrNi₂Ge₂ at the midpoint $T_c =$ 0.75 K of a transition width of 0.72-0.78 K. This new specimen presents the same onset $T_c = 0.78$ K as the previous measurement [20]. For SrPd₂Ge₂, similar results yield $\Delta C = 37.1$ mJ/mol K, $T_c = 2.92$ K and a transition width of 2.85–2.96 K.

Corroborative evidence of the of the superconducting transition is given in Fig. 2. The electrical resistance of $SrNi_2Ge_2$ indicates a T_c onset of 1.1 K with zeroresistance $T_c(\text{zero}) = 0.87$ K. Due to the short-circuit nature of resistivity measurements, it is not surprising to have the higher T_c onset, which suggests that as-melted samples with nominal composition $Sr_{1-x}T_{2-y}Ge_2$ may contain some vacancy-free 1:2:2 stoichiometric phase [13].

For SrPd₂Ge₂, a higher T_c onset of 3.2 K was observed in 10-G low-field magnetic susceptibility measurements as shown in Fig. 2. Large zero-field-cooled (ZFC) shielding signals of $-7.68 \text{ cm}^3/\text{mol}$ at 2 K and $-1.26 \text{ cm}^3/\text{mol}$ at 3 K were observed

online)

with field-cooled (FC) Meissner signals of $-3.53 \text{ cm}^3/\text{mol}$ at 2 K and $-1.26 \text{ cm}^3/\text{mol}$ at 3 K. The T_c of 3.2 K is the highest T_c reported so far for SrPd₂Ge₂. Again, this higher T_c may be associated with some stoichiometric 1:2:2 grains in the polycrystalline samples. No T_c above 2 K was observed in SrPd₂Ge₂ at a 1-T applied field.

A C/T versus T^2 plot for SrNi₂Ge₂ with $T_c = 0.75$ K is shown in Fig. 3. Above T_c , the normal-state heat capacity from 1.4 K to 3.2 K can be fitted with the formula $C_N(T) = C_{eN} + C_{Debye} = \gamma T + \beta T^3$, with an electronic term coefficient $\gamma = 15.3$ mJ/mol K² and a Debye temperature $\theta_D = 287$ K from $\beta = 0.413$ mJ/mol K⁴. A slightly upturn deviation from linearity starts around 1.4 K, which is even higher than the resistivity T_c onset of 1.1 K. Again, the higher T_c may be due to some 1:2:2 stoichiometric phase in the polycrystalline sample. The derived superconducting heat-capacity jump ratio $\Delta C(T_c)/\gamma T_c$ of 1.05 is lower than the BCS value of 1.43.

A $(C - \beta T^3)/\gamma T_c$ versus T/T_c plot for SrNi₂Ge₂ is shown in Fig. 4. Below $T_c = 0.75$ K, the superconducting electronic heat capacity contribution $C_{eS}(T) = C_{eS} - \beta T^3$ can be roughly fitted with a simple exponential formula $C_{eS}/\gamma T_c =$

7.01 exp $(-1.10T_c/T)$ which suggests an average superconducting energy gap $E_g(\text{ave}) = 2.21 \ kT_c = 0.14 \text{ meV}$ for this multi-gap *s*-wave-like superconductor. The ratio $E_g(\text{ave})/kT_c$ is lower than the BCS value of $E_g(0)/kT_c = 3.5$.

A band-structure calculation for SrT_2Ge_2 (T = Ni, Pd) suggests that, with 30 valence electrons per formula unit, as compared to 28 valence electrons for the quasi-2D-like BaFe₂As₂, the Fermi level shifts up into the upper manifold of T-nd/Ge-4p hybridized bands where, in addition to d_{xy} and $d_{x^2-y^2}$ bands, large contributions exist from d_{xz} , d_{yz} , and d_{z^2} bands. As a result, the Fermi surface is transformed into a multi-sheet 3D-like structure [17].

The deviations of $\Delta C(T_c)/\gamma T_c$ and E_g/kT_c from the BCS values suggest that SrNi₂Ge2 is of an unconventional multi-gap *s*-wave nature and similar to that of ironbased superconductors [14, 15]. The lower superconducting transition temperature of this electron-overdoped material in the weakly electron-correlated Fermi liquid regime is the direct result of more dispersive 3D-like Fermi surface. The observed γ value of 15.3 mJ/mol K² is higher than 7.85 mJ/mol K² calculated from the free electron model and indicates the effect of electron-correlation for this multi-gap superconductor.

To check the validity of the fit and the field-dependent superconducting- and normal-state properties, $C(B_a)/T$ versus T^2 of another SrNi₂Ge₂ (Sample II) in applied fields $B_a = 0$, 80 G, and 1 T are shown in Fig. 5. Identical midpoint T_c of 0.75 K (inset) with transition width 0.73–0.80 K was observed at zero field, and T_c decreases to 0.62 K with transition width 0.53–0.71 K in 80 G. Heat-capacity jump onset at 0.57 K was clearly observed in 1-T field with an extrapolated upper critical field $H_{c2}(0 \text{ K}) = 5 \text{ T}.$

The normal-state heat capacity $C_N(B_a)$ above 1.4 K in three different fields can all be fitted with $C_N(T) = C_{eN} + C_{Debye} = \gamma T + \beta T^3$ with a slightly larger but field-independent $\gamma = 17.1$ mJ/mol K² and a Debye temperature $\theta_D = 274$ K from $\beta = 0.475$ mJ/mol K⁴. Again, an upturn deviation from linearity indicates a T_c onset around 1.4 K. The superconducting heat-capacity jump ratio $\Delta C(T_c)/\gamma T_c$ is 0.88. Since both samples show an 122 single phase, the slightly different values observed

may be due to a slight composition variation of $Sr_{1-x}Ni_{2-y}Ge_2$ in the arc melting processes.

A C/T versus T^2 plot for SrPd₂Ge₂ having the higher $T_c = 2.92$ K is shown in Fig. 6. Above T_c , the normal-state heat capacity from 3.5 K to 6.3 K can also be fitted with the formula $C_N(T) = \gamma T + \beta T^3$, but with a larger normal-state electronic coefficient $\gamma = 18.1$ mJ/mol K² and a lower Debye temperature $\theta_D = 160$ K from $\beta = 2.38$ mJ/mol K⁴. The upturn deviation from linearity indicates a T_c onset around 3.5 K which is higher than 3.2 K from the magnetic susceptibility data. This supports our speculation that stoichiometric ratio of 1:2:2 is crucial for an elevated T_c .

The superconducting specific-heat jump ratio $\Delta C(T_c)/\gamma T_c$ of 0.70 is even lower than 0.88–1.05 observed for SrNi₂Ge₂, further indicating an unconventional nature of *s*-wave superconductivity in these compounds.

A $(C - \beta T^3)/\gamma T_c$ versus T/T_c plot for SrPd₂Ge₂ is shown in Fig. 7. At low temperatures, a Schottky-type contribution is observed and the superconducting-state heat capacity, after having the lattice term substracted, $C_S - \beta T^3 = C_{eS} + C_{Schottky}$. However, the Schottky-type contribution decreases rapidly with increasing temperature and becomes totally negligible for T > 1.5 K. As a result, the superconducting electronic heat capacity C_{eS} above 1.5 K can be roughly fitted with exponential formula $C_{eS}/\gamma T_c = 7.34 \exp(-1.27T_c/T)$ which corresponds to a larger average superconducting energy gap E_e (ave) = 2.54 $kT_c = 0.64$ meV.

The additional contribution to the observed heat capacity below 1.5 K increases with decreasing temperature, resembling roughly to the high-temperature tail of a nuclear Schottky term. Without any magnetic ordering of electronic moments to induce a magnetic hyperfine field here, the anomaly is presumably a nuclear quadrupole term, which is caused by the alignment of nuclear quadrupole moment in the electric field gradient of the crystal. Its magnitude relies on the non-zero quadrupole moment and a large electric field gradient at nucleus. Palladium is the most likely source, since it has an isotope, ¹⁰⁵Pd, with higher natural abundance (22.3 %) as well as a larger nuclear quadrupole moment (+6.6 × 10⁻²⁹ m²) than nickel (⁶¹Ni, 1.14 %, +1.62 × 10⁻²⁹ m²), strontium (⁸⁷Sr, 7.0 %, +3.35 × 10⁻²⁹ m²) or germanium (⁷³Ge, 7.73 %, -1.73 × 10⁻²⁹ m²). Indeed, no similar anomaly was observed in SrNi₂Ge₂. The highly anisotropic layered structure of SrPd₂Ge₂ must be responsible for the large electric field gradient.

The observed γ value of 18.1 mJ/mol K² is higher than that of SrNi₂Ge₂ and much higher than 6.84 mJ/mol K² calculated from the free electron model. Previously reported single crystal heat-capacity data with a lower T_c of 2.67 K in a narrow temperature measurement range from 2 to 3.5 K may be unreliable [19]. Low T_c suggests that the flux-grown single crystal may not of the stoichiometric 1:2:2 composition. The curve-fitting below heat capacity upturn of 3.5 K had led to an incorrect $\Delta C(T_c)/\gamma T_c$ value of 2.1 instead of 0.70 revealed in this report.

4 Conclusion

Low-temperature heat capacity C(T) of multi-gap SrNi₂Ge₂ with $T_c = 0.75$ K shows a heat-capacity jump ratio $\Delta C(T_c)/\gamma T_c = 0.88$ –1.05 and an average superconducting energy gap $E_g(\text{ave}) = 2.21 kT_c = 0.14 \text{ meV}$. For SrPd₂Ge₂ with $T_c = 2.92$ K, the jump ratio is $\Delta C(T_c)/\gamma T_c = 0.70$ and $E_g(\text{ave}) = 2.54 kT_c = 0.64$ meV. An observed higher T_c onset is likely associated with some stoichiometric 1:2:2 grains in the sample. The deviation of E_g/kT_c from the BCS ratio of 3.5 suggests that these 122-layer germanide compounds may exhibit *s*-wave multi-band superconducting gaps and be of an unconventional *s*-wave nature as proposed for iron-based superconductors.

Acknowledgements This work was supported by Grants No. NSC101-2112-M-007-013-009-MY3 and NSC100-2112-M-001-019-MY3 of the National Science Council of the Republic of China.

References

- 1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)
- A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D.J. Singh, D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008)
- 3. D.J. Singh, Phys. Rev. B 78, 094511 (2008)
- 4. E. Aktürk, S. Ciraci, Phys. Rev. B 79, 184523 (2009)

- T.-M. Chuang, M.P. Allan, J. Lee, Y. Xie, N. Ni, S.L. Bud'ko, G.S. Boebinger, P.C. Canfield, J.C. Davis, Science 327, 181 (2010)
- N. Ni, S. Nandi, A. Kreyssig, A.I. Goldman, E.D. Mun, S.L. Bud'ko, P.C. Canfield, Phys. Rev. B 78, 014523 (2008)
- 7. H. Hosono, Physica C 469, 314 (2009)
- A.I. Goldman, D.N. Argyriou, B. Ouladdiaf, T. Chatterji, A. Kreyssig, S. Nandi, N. Ni, S.L. Bud'ko, P.C. Canfield, R.J. McQueeney, Phys. Rev. B 78, 100506 (2008)
- S.-H. Baek, N.J. Curro, T. Klimczuk, E.D. Bauer, F. Ronning, J.D. Thompson, Phys. Rev. B 79, 052504 (2009)
- 10. J.-H. Chu, J.G. Analytis, C. Kucharczyk, I.R. Fisher, Phys. Rev. B 79, 014506 (2009)
- J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Phys. Rev. B 82, 180520(R) (2010)
- A.F. Wang, J.J. Ying, Y.J. Yan, R.H. Liu, X.G. Luo, Z.Y. Li, X.F. Wang, M. Zhang, G.J. Ye, P. Cheng, Z.J. Xiang, X.H. Chen, Phys. Rev. B 83, 060512(R) (2011)
- W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J.-P. Hu, X. Chen, Q.-K. Xue, Nat. Phys. 8, 126 (2012)
- 14. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. **101**, 057003 (2008), and reference cited therein
- 15. T. Hanaguri, S. Niitaka, K. Kuroki, H. Takagi, Science 328, 474 (2010), and reference cited therein
- 16. H. Fujii, A. Sato, Phys. Rev. B 79, 224522 (2009)
- 17. I.R. Shein, A.L. Ivanovskii, Physica B 405, 3213 (2010)
- C.D. Yang, H.C. Hsu, W.Y. Tseng, H.C. Chen, H.C. Ku, M.N. Ou, Y.Y. Chen, Y.Y. Hsu, J. Phys. Conf. Ser. 273, 012089 (2011)
- 19. N.H. Sung, J.-S. Rhyee, B.K. Cho, Phys. Rev. B 83, 094511 (2011)
- J.W. Wang, I.A. Chen, T.L. Huang, Y.B. You, H.C. Ku, Y.Y. Hsu, J.C. Ho, Y.Y. Chen, Phys. Rev. B 85, 024538 (2012)